UNIT TEST PAPER

CLASS : XII SUBJECT : CHEMISTRY. MAX. MARKS : 50 TIME : 2 hours

Haloalkanes & Haloarenes, Alcohols, phenols & ethers, Aldehydes, ketones & Carboxylic acids

General Instructions:

- 1. All questions are compulsory.
- 2. There will be no overall options.
- 3. Internal choice is given in all three 5 marks questions.
- 1. Explain why the dipole moment of chloroform is lower than that of cyclohexyl chloride?
- 2. Which of the following 2 compounds would react faster by SN² pathway:- 1-bromobutane or 2-bromobutane and why?
- 3. Out of bezene and phenol which is more easily Nitrated and why?
- 4. Di-tert-butyl ether cannot be made by williamson's synthesis. Explain why?
- 5. Write the IUPAC name of the following organic compound. CH₃-O-CH₂-CH(OH)-CH₂-CH₃
- 6. Identify the following name reactions and write the reagents used: $CH_3CHO \rightarrow CH_3-CH_3 + H_2O$
- 7. Fluorine is more electronegative than Chlorine even then P-Fluorobenzoic acid is weaker acid than P-Chlorobenzoic acid. State the reason for this.
 - 8. Propanal is more reactive than propanone. Give reason.
 - 9. Account for the following:
 - i) Haloalkanes undergo nucleophilic substitutions while haloarenes undergo electrophilic substitution reaction
 - ii) Haloalkanes react with KCN form alkylcyanides while isocyanides are formed with AgCN.
 - 10. How the following conversions can be carried out?
 - i) Toluene to benzyl alcohol
- ii) Ethanol to but-1-yne.
- 11. Write the equations of the reactions which takes place when
 - i) Thionyl chloride is treated with 2-propanol. ii)
 - ii) Cumene hydroperoxide is treated with dil. H₂SO₄.
- 12. When toluene is chlorinated:
- i) in presence of sunlight ii) in dark, in the presence of lewis acid, two separate compounds are obtained. Explain with suitable mechanism.
- 13. Write the steps involved in the mechanism of acid catalysed hydration of propene
- 14. Arrange the following compounds in an increasing order of the property mentioned
- CH₃CH₂CH(Br)COOH, CH₃CH(Br)CH₂COOH, (CH₃)₂CHCOOH, CH₃CH₂CH₂COOH..... acidic strength.
- CH₃CHO, CH₃CH₂OH, CH₃OCH₃, CH₃ CH₂ CH₃ ----- boiling point.
- 15. The decreasing order of acidity of a few carboxylic acids is given below:
- C₆H₅COOH > C₆H₅CH₂COOH > CH₃COOH > CH₃COOH Explain plausible reason for the order of acidity followed.
- 16. Distinguish between: i) Acetaldehyde and Acetone
- (ii) Phenol and Aniline

- 17. Give reasons:
 - i) The α hydrogen atoms of carbonyl compounds are acidic.
 - ii) Benzaldehyde is less reactive in Nucleophilic addition reactions.
- 18. Write equations for
- i) Cross aldol condensation between propanal and ethanal in the presence of dil. NaOH.
- i) Disproportionation of Benzaldehyde in conc. NaOH.
- 19. Compound (A) reacts with SOCl₂ to give compound (B). B reacts with Mg to form Grignard reagent which is treated with acetone and the product is hydrolyzed to give 2-methylbutan-2-ol. Identify A and B compounds?
- 20. How will you bring about the following conversions in more than two steps?
 - i) Propanone to Propene
 - ii) Benzoic acid to Benzaldehyde.

Or//

Account for the following:

- i) P-nitro phenol is a stronger acid than phenol.
- ii) Phenols undergo substitution at ortho and para positions
- iii) During preparation of an ester from carboxylic acid and alcohol the ester is distilled as soon as it is formed.
- 21. Write the equation involved in the following reactions:
 - i) Reimer Tiemann Reaction.
 - ii) Kolbe's Reaction
 - iii) Williamson ether synthesis.

Or//

Name the reagents for the following

- i) Oxidation of primary alcohol to aldehyde.
- ii) Oxidation of primary alcohol to carboxylic acid.

- iii) Dehydration of prapan-2-ol to propene.
- 22. An organic compound (A) having molecular formula C₆H₆O gives a characteristic colour with aqueous FeCl₃ solution. (A) on treatment with CO₂ and NaOH at 400 K under high pressure gives (B) which on acidification gives a compound (C). C reacts with acetyl chloride to give (D), which is a popular Pain killer. Deduce the structures of (A), (B), (C) and (D).

Or//

Explain the following:

- (i) Wolf Kishner reduction
- (ii) Haloform reaction
- (iii) HVZ reaction
- 23. How do the following react
 - i) Acetyl chloride and toluene in the presence of anhydrous AlCl₃
 - ii) Semicarbazide and formaldehyde
 - iii) Ethyl benzene and alkaline KMnO₄

Or//

A compound X (C_2H_4O) on oxidation gives Y ($C_2H_4O_2$). X undergoes haloform reaction. On treatment with HCN, X forms a product Z which on hydrolysis gives 2-hydroxy propanoic acid.

- i) Write down the structures of X and Y.
- ii) Name the product when X reacts with dil. NaOH.
- iii) Write down the equations for the reactions involved.
- 24. Account for the following:
 - i) C -OH bond angle in alcohol is less than tetrahedral angle of 109.5°
 - ii) Alcohol reacts with SOCl₂ to give pure halo alkane.
 - iii) Methyl phenyl ether reacts with HI to give phenol and methyl iodide and not methanol and iodo benzene.
 - iv) In the reaction between acid chloride and alcohol a small amount of pyridine is added.
 - v) Water is a stronger acid than alcohol.

OR

a) Explain the mechanism of the following reactions:

i) CH₃CH₂OH →

 $CH_2 = CH_2 + H_2O$ $(CH_3)_3CI + C_2H_5OH$

- ii) (CH₃)₃CO C₂H₅ + H→ b) Carry out the following conversions:
 - i) Chloro benzene to phenol.
 - ii) Tert butyl alcohol to 2-methyl prop-1-ene.
- 25. a) Describe the following reactions with one example of each
 - i) Friedal- Craft reaction
 - ii) Cannizzaro Reaction
- b) Compound A ($C_6H_{12}O_2$) on reduction with LiAlH₄ yields two compounds B and C. The compound B On oxidation gave D which on treatment with aqueous alkali and subsequent heating furnished E. The latter on catalytic hydrogenation gave C. The compound D on further oxidation gave CH₃COOH Deduce the structure of A,B,C,D and E.

OR//

- a) Write the chemical reaction to illustrate the following:
 - i) Rosenmund reduction
 - ii) Aldol condensation.
- b) Distinguish between the following pairs:
 - i) Propanal and propanone
 - ii) Acetophenone and Benzophenone
 - iii) Phenol and Benzoic acid.

Or / /

- a) Convert
 - i) Acetophenone to 2-phenyl-2-butanol.
 - ii) Propene to acetone.
- b) An organic compound 'A' contains 69.77% carbon, 11.63% hydrogen and the rest is oxygen. The molecular mass of 'A' is 86. It does not reduce Tollen's reagent but forms an addition compound with sodium hydrogen sulphite. 'A' gives a positive iodoform test. On vigorous

oxidation 'A' gives ethanoic and propanoic acids. Deduce the possible structure of molecule 'A'.

OR

- a) How do you separate the following mixtures?
 - i) o-Nitrophenol & p-Nitrophenol
 - ii) Aldehyde & Ketone
- b) An unknown aldehyde A, C_7H_6O on reaction with KOH gives B and C. A reacts with Zn-Hg and conc. HCl to give D which changes to A by CrO_2Cl_2 . B on heating with soda lime gives E. identify A to E and write all reactions.