WS 9.3 Logarithms & Exponential Equations

 $y = x^n$ In this equation, n is the **logarithm** of y.

For example, $10^3 = 1000$. Therefore, $\log 1000 = 3$.

Power Property of Logarithms: $\log x^n = n \log x$

Logarithms can be used to solve equations in which variables appear as exponents *(exponential equations)*. To do this, you take the <u>logarithm</u> of <u>both sides</u> of the equation:

Example: Solve for x: $5^x = 100$ $\log 5^x = \log 100 \quad \text{(take log of both sides)}$ $x \log 5 = \log 100 \quad \text{(power property of logs)}$ $x = \log 100$ $\log 5 \quad \text{(solve for x)}$ x = 2.86

Exercises: (solve for the variable, and show all steps)

1.
$$4^{x} = 64$$

$$2. 2^n = 256$$

$$3. 3^{2} = 264$$

4.
$$4.8 = 2^n$$

5.
$$2^{x} = 5024$$

6.
$$3^n = 4.1 \times 10^5$$