WS 9.3 Logarithms \& Exponential Equations

$\mathbf{y}=\mathbf{x}^{\mathbf{n}}$ In this equation, n is the logarithm of y.
For example, $10^{3}=1000$. Therefore, $\log 1000=3$.
Power Property of Logarithms: $\boldsymbol{\operatorname { l o g }} \mathbf{x}^{\mathbf{n}}=\mathbf{n} \boldsymbol{\operatorname { l o g }} \mathbf{x}$
Logarithms can be used to solve equations in which variables appear as exponents (exponential equations). To do this, you take the logarithm of both sides of the equation:
Example: Solve for $\mathrm{x}: 5^{\mathrm{x}}=100$

$$
\begin{array}{rlrl}
\log 5^{x} & =\log 100 & & \text { (take log of both sides) } \\
\mathrm{x} \log 5 & =\log 100 & & \text { (power property of logs) } \\
\mathrm{x} & =\log 100 & \\
\log 5 & \text { (solve for } \mathrm{x} \text {) } \\
\mathrm{x} & =2.86 & & \\
\hline
\end{array}
$$

Exercises: (solve for the variable, and show all steps)

1. $4^{x}=64$
2. $2^{n}=256$
3. $3^{z}=264$
4. $4.8=2^{n}$
5. $2^{x}=5024$
6. $3^{n}=4.1 \times 10^{5}$
